
AD/A-Ü04 092

??^|E^SPECTS 0F THE SYMBOLIC MANIPULA-
TION OF COMPUTER DESCRIPTIONS MNIKUL-A-

M. R. B a r b a c c i , et a I

Cirnegie-Mellon University

r e p a r e ci lor:

Air Force Otfice of Seien ti tic Research
Defense Advanced Research Projects Agencv
National Science Foundation

July 197 4

DISTRIBUTED BY:

urn
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

tmam

UNCLASSIFIED
irCURITV C t. *'..'.IF I ; ATin«. or TMIJ PAST fl "i t>»t» Knl-re 0

REPOirr DOCUMENTATION PAGE
KKAÜ INSTRUCTIONS

REPORR COVI .ETtNQ KORM

t HLt'C-iT SUMtltK 2 OOVT ACC t SSION KO

4 TlTUC (»n't Submit)

SOME ASPECTS OF THE SYMBOLIC M/iNIPULATION OF COM-

PUTER DESCRIPTIONS

3 hCCI^'KNT S CATALOG NUMSCN

S. TYPE OF REPORT 4 PFRIOO CO'.":Rtt

7. AUTMORfi;

M.R, BARRACCI AND D.P. SIEWIOREK

9 PERFORMING (HOANIZATION NAME AND ADDRESS

Carncpic-Hcllon University
Department of Computer Science
Pittsburgh, Pennsylvania 15?13

s. TYPE or REPO

Interim

e. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMElLRfsJ

F44620-73-C-0074

II. CONTROLLING 0^ FICE NAME AND ADDf<L5S

Defense Advanced Reserr-.h Projects Apency
1400 Wilson Blvd
Arlin^ton, Virginia

T* MONITORTNG AOENCY NAME « ADDHFSbfyf dilleienl Irom Cantrolllnt Olltce)

Air Force Office of Scientific Research (NM)
1400 Wilson Blvd
Arlington, Virginia 22209

10. PROGRAM ELEMENT. PROJECT. TASK
AREA ft WORK UNIT NUi dERS

61101D
AO-2466

12. REPORT DATE

July, 1974
13. NUMBER OF PAGES

26
15. SECURITY CLASS, (of ihn rr.-ofl;

UNCLASSIFIED

IS«" DFCL ASSIFIC ATION' DOWN GRAD1 SO
SCHEDULE

16. DISTRIBUTION ST ATEMENT (ol Ihlt Heporl)

Approved for public release; distribution r.nl'• .Itcd,

»7. DISTRIBUTION STATEMENT (ol lh» abKrad tnltttd in Blozk 20. II dlllmfnl Irom Htporl)

18. SUPPLEMENTARY NOTES

19 KEY WORDS ('Continue on MVOTM 'Id» II necaatary and Idtnllly by 6/JC* num6ar>

NATIONS'

WCE SDUGCT ID CHANGF
20. ABSTRACT CConl/nu» on re. ana aid« /(nrrassar/ and tdendfy !>)' bfock numbar; Trfl J 11 lona 1 1%' COmpUter dOS-

criptive languages have been designed primarily for human commmication and/or sim
ulation. Due to this narrow range of applications the existing languages have
taken on a stron degree of similarity. In this paper we present some applications
in the realm of automatic design of both hardware and software where a computer
description language, could serve as the information exchange media between the
user and the design automation svstem. The paper discusses an environment fotr
research on the applications of computer descriptive languages, emphasizing the
multiplicity of users ani tasks that may coexist on anv point in time. Some pro-

DD | JAN"! 1473 EDITION OF 1 NOV 6S IS OBSOLETE ITNCT.ASSTFIED

 £. m

20. /^STRACT (continued)
porties needed in a computer descriptive tanguAgc are presented,
programming approach to hardware design is presented by example,

A structured

1A

Some /^pects of ihe Symbolic (vlampulation
of Computer Descriptions *

W.R. Barbacci and U.P. Siewiorek
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pa. 15213

July, 1974

ABSTRACT

Tradulonaily computor dcscr.puve languages hav^ been designed primarily for
human communication and/or simulat.on. Due to this WO* range of applications the
existing lansuases have taken on a strong degree of similarity. In ihis paper we
preS some applications m the realm of automatic design of both hardware and
software where a computer description language could serve as the mformat.on
exchange media between the user and the design automation system. The paper
discusses an environment for research on the applications of computer oescnptive
languages, emphasizing the multiplicity of of users and tasks that may coexist an any
point in time. Some properties needed ,n a computer descnptiv- language are
presented. A structured programming approach to hardware design is presented by

example.

* TMl P^per de-scribes a current research effort at Carnegie-tviellon Umversity. The
autnors wish to make clear the active role being played in this research project by
many other members of the CMU community: Samuel Fuller, Paul Hilf.nger, Dav.d
Jefferson, Karla Martin, Joseph Newcomer, Allen Newell, John O^ley, Mary Chaw,

Richard Swan, and William Wulf.

This wo., is supported m part by the Advanced Research Projects Agency JARPA) of
[he Department of Defense, und^ contract FA4G20-73-C-0074, monitored by the Air
Force Office of Scientific Researc ■ and by the National Science Foundation under grant

GJ 32758X.
Ai I

Some Aspects of the Symbolic Manipulation
of Computer Descriptions

INTRODUCTION

Traditionally computer descriptive languages have been designed primarily for

human communication and/or simulation [Chu, 1965; B»il, 1971]. Due to this narrow

range of applications the existing languages have taken on a strong degree of similarity

[Barbacci, 1973a]. There are other applications in the realm of automatic design of

both Hardware and software where a computer description language could serve as the

Informatier exchange media between tne user and the design automation system. By

examining these applications the information requirements can be determined and from

these a 'anguage tha» serves for several (but still not necessarily for all) applications

can be designed.

This paper descnoes some preliminary resul.s of a research group at

Carnegie-Mellon University. We present a case for machine-relative software and

other related areas of research. A brief discussion of the domain of tasks we are

considering is followed by a more detailed descnpt on of the requirements for two of

them, namely the design of machine relative compiler-compilers and the design of

modular hardware systems. We present an overview of an environment for research in

these multiple applications. The key word here is "multiple". We visualize a system

that will support multiple, concurrent users, investigating different aspects of the

problem domain, implementing subsystems in different prog ramming languages which

manipulate machine descriptions given in different computer description languages. One

of the key issues is the specification of adequate computer description 'anguages. We

Some Aspects of the Symbolic Manipulation
of Computer Descriptions

discuss some properties desired in such notations and, finally an example in a

structured programming approach to top-down computer design is used to present

some of our ideas in just one of the several areas of our research interests, albeit a

crutial one.

MACHINE RELATIVE SOFTWARE

There is a continual stream of new nacnmes spurred Dy the advent of

minicomputers and microprocessors. Earh macnine has a different Instruction Set

Processor (ISP) [Bell, 1971]. The emergence of microcoded systems with the option

of user defined instructions has increased this flow of ISPs. Each new system requres

supporting software and the amount of software grows for any individual system as

user requirements grow.

There are a number of directions in which to seek a solution to ease the bürde,,

of software development. Standardization of software packages written in high level

languages such as Algol, FÜRTRAN, and COBOL is one approach. It reduces the amount

of software needed for each new machine. A racond direction is in terms of better

software production systems. This may be sought either in terms jf implementation

systems (high level languages specifically designed to aid implementation) or in terms

of better software methodologies (e.g., structured programming). Another direction,

which we will consider in detail, is to relativize the production of software to the

description of the machine.

Some Aspects of the Symbolic Manipulation
of Computer üescnptions

The central ingredient of this latter approach is the description of (Omputer

systems in a symbolic form, ";ucn that a ran^e of problems can be solved by

manipulation of these descriptions. We stress tha need for diversity in the problem

domain if we are really to understand how to operate relative to computer descriptions.

The next section will illustrate some points in the problem domain.

APPLICATIONS OF COMPUTER DESCRIPTIONS

To oe ciear about the multipurpose character of a computer description, let us

list several Kinds of problems that one might want to solve, each of which requ ■■es an

abstrac'; description of a computer.

1) Compiler-Compiler.- A system that takes as input a description of a
language r.nd a description of a machine ond outputs) compiler for thai

cot iputer. Given the state of the art, the language would prooably be
res'.rcted to be Algol-like. [Miller, 1971] is an early attempt at a solution to

this problem.

2) Verification uf I/O programs.- Given an 1/0 program, such qs a device
handler, and a description of both the computer and the hardware device

controller, verify that the program works. This problem has some special
features that set it apart from the general program verification problem,
brides its importance as an applied task: (a) its strong dependence on the
deicripticn of computer systems in classic for.n (i.e., at the Register Transfer
level) rather than in some abstract semantics, (b) the programs themselves
may not be very complex in terms of their algorithms; rather the complexity of
the task arises from the openness of the environmental states that have to cope
with Jiimmg, concurrency, etc.)

3) t'rofrrammir.g o) Microcodcd Special Cwnpulcrs.- The »bility to create
S3eclalized computers to perform particular narrow classes of algorithms
economically cpens a world of device dependent, one-time programming tasks

- - * — — ——mm Mrf

Some Aspscts of the Symboiic Manipulation
of Computer Descriptions

tnat poses an immense problem. These systems attempt to opt.mize
performance; tneir organ.zation cannot be dictated Oy considerations of
programmmg ease. Tneir programming will become o.fncuit in the extrtme
especial when no opportunity will ex.sts for the growth of programmmg
Know-now. Tms suggests that what the human will do is .0 program relative
to a machine description that he has barely assimilated. Hence it is reasonab.e
to construct programm.ng systems that operate relative ^o machine aescnpt.ons

of a class of machines.

4) f*dtn»fllM*SyU*m*.- Given a desired macnme described .r terms
of some specification language, and g^ven a space of machines def.ned by a
class of Register Transfer [Bell. 1971] level modules, design a machine
according to various constraints and cntenon tunctions. Th,s is a ^assic design

situation which ,s wortn studying, both m terms of ^e;sta^nS t
h

hft
nat

n
U

f
re

t "
design and in terms of automating computer design The feas^ of this
approach has been demonstrated by the EXPL sy.tem [Barbacci. i973b].

5) Dosi.nio^rificution.- Given a funct.onal specification for a computer
and a s^'ace o computer systems defined by a computer description language
design a computer that performs to the specification. This is -otner form o

he'classical design tas.. It differs .rum <4) above. ***** ^'^
guen some general functions, create an ISP for a computer. A ypi al UjMn
(AH. g-en an ISP, design it in terms of Foster Transfer level modules.
Formally they may seem iden^cal. but the design spaces looi. quite d.nerent.

6) Mf« Vorifiranon.- Given a specification for a computer and a ^"f™
of that computer In tne language, verify that the computer sa isf es he
specification. We can also include here the automatic genero.on of testir Z and

diagnostic programs.

7) Manual «rneration.- Given a computer defmed in the language, ^eate the
documentation for the computer. This tas. is quite different from tne ones
above, but also mvolves undarstandrng and manipulating a computer description.

The applications listed above place a variety of demands on the computer

descriptive Imguage and it ,s hardly clear whether a single language can cover the

entire spectrum. The next sub-sections g,ve some examples of the requirements for

two rather different If* and an outline of a possible system to meet the variety of

requirements.

*mmm

Some Aspects of the Symbolic Manipuiat;on
of Computer Descriptions

5

ilmehbtt tidmive Cemptttr-CamfUm,- By "machine relative" we imply an extension to

the traditional definition of a compiler-compiler, in which a specific target machine is

assumed. Due to this limitation, compiler-compilers have solved only part of the

automatic programming problem and as a result they have not been very succesful. A

better approach has been to produce a compiler that generates pseudo-machine code.

For each new ISP the programmer simply provides trie equivalent of the

pseudo-machine instructions in terms of macros written in the target machine language

[Feldman, 196C]. Whue runnöbie programs are produced by tnis tecnmque they are

poor in terms of size and run time efficiency. There are several reasons for this lack

of efficiency: built-in preconceptions about existing instructionr, the introduction of an

extra level of abstraction that must be hind translated, the lack of consideration for

specific machine features that can do certain things more efficiently that others, etc.

Hence we are primarily interested m generating an optimizing compiler. In order

to generate machine code that will rival that of a good programmer, a

compiler-compiler must extract the idiosyncrasies of the machine. For example, one

way to add four to a register m the PDP-li [DEC, 1973] is to use the instruction

"ADD ttA.Rl". This requires two 15-bit words, one for the instruction and one for the

immediate operand 4. Kowever, the automcrement addressing mode adds two to a

designated register after using its contents as the address of an operand. Thus an

instruction that effectively is a No-Operation code and uses the automcrement mode on

the register for both source and destination operands cat achieve the effect of adding

4 to the regster. Thus "CMP (R1) + ,(R1)+" will add 4 to Rl and requires only one

16-bit word. Note that the compare mstrcrtion is not a true NOOP since it will set the

mm^

Some Aspects of the Symoolic Manipulation
of Computer Descriptions

conaition code registers according to the result of the comparison. The compiler has to

insure that this side effect is not critical. One such critical case would be if the

contents of Rl is used as a loop maex and a loop exiting branch was to follow the

ada'tion. Note further tnat knowledge of the relative '-.peed of instructions and

addressing modes may be necessary to make a cnoice on the basis of speed.

Some of tne information that needs to be extracted from the machine description

is: the data types, (address, integers, floating point, etc), operations on the data types

(add, subtract, multiply, etc), location of data types (memory, register, etc), and

instruction side effects (condition codes, use of hidden operands, etc), instruction side

effects are particularly important« The following PDP-11 code sequence is a good

example:

SUB A,B
TST B
BLE LABEL

where the TST instruction serves only to clear the overflow condition code. If the

Branch on Less or Equal instruction (which is condit.oned by the overflow condition

code) is replaced by a Branch on Equal instruction (not dependant on the overflow

condition) then the test instruction is superfluous and can be deleted.

One of the desired goals of a compiler is to produce the minimum cost code

sequence which evaluates a given program. It is therefore necessary to explore all

possible sequences that represent the evaluation and are semantically equivalent and

eliminate those that exceed the least-cost criteria. This semantic equivalence is

ABH

mmmm

Some Aspect« of ,e Symoolic Manipulation
Of Computer Descriptions

related to the effect on the global program state in the context in which the sequence is

to oe executed, it is therefore necessary to express the global progrjm state

conditions under which a code sequence can be applied, as wen as the resulting

tranofo.mations on the state. This synergistic effect of machine language instructions

has not been considered part of the realm of traditional computer description languages.

The cost of compile time generation of cases must be weighted against the

advantages of finding the best code sequences. An intermediate solution is the

exhaustive generation of templates to guide the code generation, as in traditional

compilers. This once-only exhaustive generation process is more likely to find all the

obscure cases and discover unspected semantic equivalences tnan hand-designed

templates [Newcomer, 1974].

Modular Design.- Now cons der a modular dc-sign program that produces a finished

machine design in terms of a preaesenbed module set. A modular implementation of a

system can usually be divided into a data part and a control part that directs the actions

of the data part [Bell, I972J. The data types and their operations can be implemented

via templates of modules. Again, as in the case of the compiler-compiler, synergistic

effects must be discovered in order to produce the most efficient network or modules

for a given machine description. This implies certain commonality of information

required by this two applications. However, there are many details of a module sft

that the compiler-compiler does not need to know. Assume that the modules are

commercially available semiconductor chips and that the output from the design program

is a printed circuit board layout. Knowledge of chip orientation, power requirements,

A _l «M mtmm

mmmm

Some Aspects of tne Symbolic Manipulation
of Computer Descriptions

and chip spacing is needed by the design automation system to produce a wiring list.

Hence there is information contained in the computer description that is required

by two or more applications while some other information is particular to a single

app.cation.

/J roscafch environment for ihr symholic inani/julatio» of machine descriptions.-- The

sin-, 'ar requirements among tne several appiicat.ons of computer description languages

suggest a research environment centered around a data base in which macnine

descriptions and manipulation programs are maintained, as depicted in Figure 1.

simulation compiler-compiler

I

I
I
LI

1

design-automation

I
I

L2

I I
I I
L3 . ..

I I
I I

• • • •

data base

Figure I. The environment

The user inputs informstion into the data base via one or more computer

description languages. The application programs manipulate ihe global data base to

extract information in the format dec.red by the application.

The data base and it; manipulftion programs must be able to support many

1

Some Aspects of the Symbok Manipulation 9
of Computer Descriptions

different notations and areas of application. This can oe expressed by tne following

set of required features:

1) Must hold all computer descriptions for the different applications.

2> Must be reasonably independent of any particular pregrmmmbtt languöge.
rhil is necessary to aiiow researchers the flexibility to implement aophcation
programs (i.e. computer description manipulators) in a programmm', language
of tneir cnoice (e.g., FORTRAN, Algol, APL, LISP, BLISS, etc.)

3) Must be mdependeni of any particular comimior descripiion language. The
reason is tnat the computei descriptive language used to create elements of the
date base is a moving target. It is also the case tnat so ne notations may be
more suitable tnan otners for specific paris of a machine description. This
implies an evolutionary process, during which many üifferent notations can be in
use simultaneously.

^) Must be interactive to allow casual and non-casual use. This requires a
set of facilities for interaction in at least one language.

5) Must allow incremental uie by many limulttntOut users. By incremental
use >'e mean the ability to carry a design through stages of complt-, jness
during wmch different users add application dependant details to a computer
Description. This is needed for experimentation.

The features outlined above present a set of requirements that may be

conflicting. One of the reasons for this generality, not addressed in previous

applications, is that the objects we want to manipulate, namely computer descriptions

represent a tremendously large domain. We a:e taikmg not only ihout hacaware

(Logic, Register Transfer, and PMS levels [Bell, 1971]) but d^so aoout algorithms

(Instruction Set Processors and programs). It is also the case that we are trying to

apply a coherent methodology to nardware desi in, a domain cha'-acterized oy rather

abrupt transitions between its descriptive levels (more so than among software levels).

Ideally we would like to converge on a nngle computer descriptive language so

Some Aspects of the Symbolic Manipulation JQ

of Computer Description?

that people in the environment can interact more easily a„iong themselves. On the

other hand, we recognize tne fact tnat r ota» -ms go through evolutions and the research

environment must be open along tms dimension. An; kind of tight associat.on between

a computer der-cnpticn language and the data base will reduce tne latter's usefulness.

The next section describes some thoughts about tl.e requirements of a computer

descriptive language At this point in time, however, we hold no commitments to any

particular existing language or coiviomation of languages. This allows us the freedom to

speculate and experiment with several, perhaps conflicting ideas. Therefore, our use

of a particular synkx m the example given as a structured orogramming approach

should not be construed as a language definition.

REQUIREMENTS OF A COMPUTER DESCRIPTIVE LANGUAGE

One of the problems with existing hardware descriptive languages is that they

tend to bind the user to a v,ew of the world that is ngid and difficc't to modify. We

feel that the semantics of the l?iguage should be under control of the designer. The

folk wing are a desireable, but by no means e>haustive, set ot properties for the

language:

1) Neutrality.- The language should not make any assumptions about the
pnysical implementation. The control primitives available in the language
determine the control structures that are easy to describe, if the language
control primitives w too rigid they w,ll limit the miplementation alternatives.
For instance, CASSA::DRE [Anceau, 1969] uses state registers as primitives.
Systems which do not decode values from centralized state registers are
therefore difficult to describe.

g — — ^—^^^^^———»—^^—^>—^

Some Aspects of the Symbolic Manipulation 11
of Computer Descriptions

2) h'iddity.- The description should make the intentions of the designers

transparct to the users. This is somewhat in conflict witn the neutrality
property.

2.1) Timiiia fidelity.- Existing languages such as ISP [Bell, 1971]

describe algorithms with no reference to timing. Thus it becomes difficult
♦o express the behavior of low level components. Another example is the
description o: cooperating parallel processes, such as interrupt systems,
where timing is critical.

2.2) Structural lidolity.- Data paths can be imerred from the description
but these may be a maximal set and may not reflect the actual structure of
the machine. At some level of description tne transfer operation, usually
denoted by "♦-", means "by whatever path available". For a more detailed
description the "♦-" correspond one-to-one with physical data paths.

The same remarks can be applied to the specification of the functional units
in the system. The presence of a " + " operator in a register transfer

expression does not indicate which of possibly many functional units is to
carry out the operation.

3) Hierarchy,- Frequently systems design is conducted in a top do vn manner.

The various portions of the system are first described at a hign level. Then the

designer specifies one subsystem in more detail, lhan another, and so forth«
At any given time a systems design might consist o' some subsystems designed
down to the gate level, some less detailed designed at the register transfer
level, and some merely described as algorithms. The coexistance of multiple
levels of description is difficult to attain in existing design languages where top

down refinements, if possible at all, are performed on a global basis by ad-hoc
manual procedures. The addition of a clock at some level 0' detail, for
instance, requires the rewriting of the entire description. Any validation that

has been performed on part or the description would have to be redone.

The final section introduces, via examples, some tnougtüs on new mecnamsms

for a computer desci iptive language tnat attempt to satisfy some of the above

requirements.

Some Aspects of the Symbolic Manipulation 12
of Computer Descriptions /

A STRUCTURED PROGRAMMING APPROACil TO A/
/

COMPUTER DESCRIPTION PROBLEM /

This section presents, via examples, some aspects of tfw use of new computer

description concepts. We will present our ideas as an exerc se in top down design.

The objective i| to design a PDP-8 like minicomputer, starting from a high level
/

description and carrying the design down to a level in which Ihe specific implementation

of tne machine is described. We will make use of sor/ie structured programming

concepts that allow us to defirp entities of the machine' (e.g., memories, registers,

functional units) independently from the USP of the entities in the description. These

concepts will be added to the descriptive language !SP [Eell, 1971]. The choice of ISP

as a framework is based on the authors familiarity with the notation and not, on a

commitment to addopt an ISP derived notation as the only « ehicle for our research. Our

concern for allowing evolutionary notations is a^o reflected in certain liberties we have

taken with respect to the syntax of the language as published in [Bell, 1971].

The concept of form [Wulf, 1974] allows us to define the data types available in

the language by specifying not only the representation of the typed objects but also

the operations 'hat can be performed or these objects. A typical form declaration

consists of a header and a body. The form header specifies the form name and the

formal parameters used inside the form body. The form oody consists of a rJeclaration

part, m which variables to be used in the form functions can be defined, and a set of

functions and operations describing the operations that can be performed on variables

declared as instances of tht form.

-C Mt. ^*m

Some Aspects of tne Symbolic Manipulation 23
of Computer Descriptions

For instance, we can def.ne a hum "memory" that describes a particular

hardware component. At some early point m the design process a memory can be

concidered as a vector of integers, thus avoiding the specification of things like word

length, number representat.on, addressing, etc. The following example is an instance

of such high level memory definition*. Two functions (operations), "read" and "write"

are defined a? accesses to a vector of integers:

tcna memory (integer size) =
(dftfitaCftffl = integer vector (size);
ÜHKiiOü read (integer ^ddr) = return rn[^rirlf" ;
iuüliian write (integer addr.val) = m[addr] <-val;
expor; read, write)

The tiXPQrt statement is used to indicate the Uma entities (variables and

operations) that are accassible to the rest of the program. Thus we can restri:t the

access to certain elements of the iflim by not exporting them. The read and write

functions are evoked automatically, üepending on the conlext m wich the memories

appear, i.e., as a source (read) or a destination (write) in a statement.

Similarly, we can define a turn "register" that behaves liKe an integer:

* In order to keep the examples within a reasonable size, we are appealing to the
intuition of the readers to supply some of the missing details concerning i,,e semantics
of the ifiims. In order to make the process easier, we have taken some liberties with
the syntax of ALPHARD and its forms [Wulf, 1974].

rtM J

Some Aspects of tne Symbole Manipulation
of Computer Descriptions

14

form register =

{dOfiiaU r=integer;
infix +(re3ister a,b) = r^t^rn a-fp;

Liüx - (register a,b) = [glmfl a-o-
in,'ix * (register a,b) = rgturr. a»b;

infix ((register a,u) = return a4b;

tUQCiiaaread = talucfl r;
L'^mLaa write('nteger vai) = r«-val;

export +,-,«,T, read, write)

The infix declaration it useo to def.ne binary infix operations on instances of the

form. Notice tnat there is nothing m this def.n.tion that reveals the nature of the

register and its structure. A more realistic definition would be the following:

form registerimteger sii:e) =

{declare r=oit vector(size);

tuition vaiue =
be^in c ^clLire integer sum;

Sum <—r[i];
incr i from 2 lü r.size dfi. sum <-surr.*2+r[i];

Liilum sum;

iiifix T (register a.u) = rM^ni a.value + b.value;
infix -(register a,b) = LCium a.value-b.value;
ir.'ix * (register a,b) = Lil^m a.value#b.value;
infix f (register a,b) = cüiuiü «rvaluerb.value;

furrl.on read = xiiiOl rvalue;
fLnctiQn wntedrtcper \fti] =

f'^cr i from r.t.m tu 1 ilfl. üejin r[i] «-val moo 2; val <-val T 2, end;

IKBfid +, -, *, T, reed, write };

in the example above, the register is defined as a vector of bits and the value of

the register is encoded using the two's complement representation. The function

"value" is not exported, thus the real nature of the regicter as a bit vector is hidden.

The read and write functions are redetmed to ailow the transfer of values in and out of

Some Aspects of the Symbolic Manipulation
of Computer Descriptions

V-j

the register. The "dot" notation it used here to indicate the access to an attribute of a

register. Thus r.size is the register size, as specified in the declaration.

Top Level ürscription.- The following description of tne POP-8 assumes the register

and memory forms defined previously. For the "-.ake of brevity we are not defining the

IO_EXECüTE and OPR.EXECUTE processes evoked by the EXECUTE process.

dec!,ire memory M(0:4096];
docljr^ register AC<0:li>,

IR<0:11>,
PC<0:11>,
L<>,
LAC<0:12>:=LDAC,
ÜATA_SvViTCHESO:ii>l

STOP_SW1TCHO,
CMPA<Ü::i>,
OP_C0üc:r|R<0:2>,
pAGE_BIT:=lR<4>1

I(MDIR£CT_B1T:=W<3>;

INTERPRETER^(IF£TCM;next DFETCn;next EXECUTE;next ,NTERPRETER);

1FETCH := (iR ♦-M[PC] ;PC «-PC + i);

DFETCH:= (COMPUTE_ADORESS ;next DEFER_^DDRESS);

EXECUTE
(OP.
(OP.
(OP.

(OP.
(OP.
(OP.
(OP.
(OP.

);

= *
.CODE
.CUDZ
.CODE

t

.CODE

.CODE

.CODE

.CODE

.CODE

= 'AND1 => AC «- AC A WiCPMA]);
-•TAD'^LAC^-LAC+MLCPMAJ);

■*ISr#MCCPMA]«>M(CPMA]4ltiMNl
1M[CPMA]<Ü=»PC*-PCT1));
= 'DCA,^>M[CPMA]<-AC;AC<-0);
= '.JS,=^M[CPMA]*-PC;PC<-CPMA + 1);
= ,JMP,=^PC*-CPWA);
= ,IO,=»iO_EXECUTE);
= ,0PR,^0PR_EXECUTE)

COMPUT£^DORESS:=(
(PAGE_BIT = 1 =>CPMA«- PAGE.MUMBER D PAGE_ADDRESS);
(PAGE_.BIT =0 =>CPMA H)OPAGEJUX3RESS)

-■» imm

Some Aspects üf the Symboi.c Man.pulatiOn 16

of Computer Oescnptions

);

DEFER_ADDRESS:=(
IND1RECT_BIT = 1=»

(10iS.<CP^A<17i8=»W[CPMA]t-M[CPMA] + l);

next C^VAr-N/^CPMA]

);

Kodojinition of ilw memory form.- After tne above definition, the design can proceed

in several directions, for instance, we can define the register operations in ierms of

bits, we can de'me tne interpretation o. me instruction regster, or we can define the

memory operations ir more detail. We choose the latter, at least because it will

produce a more hOmOgtn«OU$ aescnption (i.e., tne operations will be m terms of

registers).

Defining tne memory as c vector of registers requires two parameters, tne

number ot registers (words) ana the length of each register. The memory m the

following definition requires two auxiliary registers to perform the read and wrue

operations. Those registers are not exported out of the tflm, t-e., they are local to

the memory module.

torrr. memory^ niuger siie.wien^tn) =
{dacl^rj m = reyister iwit-ngtn) vector (size);

iruir = renter (iog<;(size));

mbr = register (wiength);

iiiXOli. m[register x] ■ m[x.vaiue];

function read(reiJisier addr) =
be^m mar*-addr; mbr *-m[mar]; relum rnbr; gM;

function write (register addr. val) -
be^.n mar «-addr; rnor *-val; m[rnar] WnDr; |Q^|

export read, write }

im

Soi.e Aspects of the S/rrbohc Manipulation
of Computer Descriptions

The access declaration .nOica'es tnat ;he value ot the register is used as the

index in tne memory vector. The effect of the redefm.tion of the memory is illustrated

m the following description, in wmcn the read and wnte operations on the memory have

been replaced by tne corresponding sequences glvor in the lom. The descr.ption of

the macnine itself has not chtngtd, only tne definition of one of its components. This

allows us to redefine tne memory at any point In time without hav,ng to change the

description.

c'echre MOmOfy M[0:4095]<0:11 >;
docure register AC<.Ü:11 >,

1R<Ü:11>,
PC<0:11>1

L<>,
LAC<0il2>t«LaAC,
DATAjSWrrCHES<OiU>,
STOPJSWITCHO,
CMPA^0:il>,
{JPJZODEi=M<.0:2>,
PAG£_BIT:=lR<4>p

iNDiR£CT_BlT:=W<'J>;

INTERPRETER:=(lFETCH;next DFETCn^ext tXECuTE;noxt INTERPRETER);

IFETCH:=(mar«-PC;noxt mbr *-M[mar];next lR*-mbr;PC<-PC +i);

DFETCH := (COMPUTE_ADDRESS ;next DEFER_ADDRESS);

EXECUTE :=(
(0P_CUDE = ,ANÜ'=^mar«-CPMA;n8xt mbr ♦-M[mar];next AC <i-AC Amor);
lüP_CüDE = ,TAD'=i>mar<-CPv,A;next mbr «-IvÜmarhnext LAC ^LA.C H-mu.);
(üP_CÜDE = 'ISZ'=i>mar*-CPMA;noxt mbr <-M[mar];next mbr«-mbi T^nex».

M[rriar]*-mbr;noxt (mbr<0=J>PC«-PC +i));
(OP^CODE^'DCA'^mar^-CPMA^ext mbr<-PC;noxt M[mar]*-rub> ; AC«-0);
(OP_CGDE = 'JMS'=»mar*-CPMA;ncxt mbr*-PC;next

tvi[mar]*-mür; PC<-CPMA+1);
(OPJSOOE = 'JMP' => PC •■ CPMA);
(ÜP_CÜDE = ■10' => 10_EXECüTZ);
(OP_C03E = 'CrH' =i>üPrl_EXECüTE)

);

m—i^*m—^am

18
Some Aspects of tne Symbolic Manipulation
of Computer Descriptions

C0MPÜTE^GEE_SBiT = 1 =*CPMA -PAGE_NUMBERDPAGE J^DDRtSi);
(PAGE_Q1T =ö =>CPMA ♦-0 DPAGE_ADDHESS)

);

DEFER_ADDREbS:=(

~(ni8<CPS/A<17i8=*mar*-CPMA;nc.xt mbr «-M[mar] ;next
mbr*-mar + l;raxt M[rriar] «-mbr) ;next

mar t-CPMA;next mbr «-MLmarJ^ext CPMA<-mbr

);

^finuionofiUrr^r^.- So far we have been dealing w,tn registers as it

they were integers. This is ..mp.y an abstraction. Harawcre reg^ers are built as

array of bits and tneretore the operates must be ult.mately aefmed Hi terms of logic

networKs operating on individual D,ts. Tne (tfB network is not defined. Informally, it

represents a set ot wires (mc.oryless components) used to carry information bacK and

forth between other components. The following definition of a register indicates now

the operations could bo pet.ormed:

taUL register (integer size) ■
(dnrlare r = bit vector (size);
mtcgg rvintcrcer x>= , r , A

hagifl ^wue n = network(I); n[l]*-r[x]; n; Hftl

hpam f-nrlnre r, = networK(x.ub.value -x.lbA alue + i),

for.-ll i uin uanti^rli+x.io]; n

^c — * mm - ^

Some Aspects o< the Symbolic Manipulation
of Cünriputer Descnptionc

19

infix + (register a(b) =
Sagiw v .. . | g < = networ<(a.size + l); carry = network {a.r^ze + i);

carryiLürfy.size] »-O;
doer i from a.5ize LQ, 1 Cfl.

x[i + l]<-ft[i]€»b[i]®carry[i + :;,
carr/[,]<-a[i]Ab[i]va[,]Acarry[i + i]vb[i]Acarry[, + l];

K(l)«>c*rry(l]i

tali
infix - (register a,b) =
■ nti/ -^(register ü; network b) =

in ..-. x^ ei.-.ors a; register b) =
infix ^(register a; integer u) =

..■:„.- ■: -r^rc K = re3ister(a.size); x^o; return a + x; udl
function read = return r;
tyo^iaa write (integer v»l) ■

fiecr i [rorri r.o.ze L2 1 ^ LtiLÜÜ r[i]*-vai rr.od 2; val<-val i 2; 1021

infit write (register u) = | I i iab dftflO^btiJj
,nfix wnteCnelworK ü) = | ill i ui o in ^M^blijj
export ^,-,«(f ,'eed,write]

With tne last example the power of tne mm mechan.sm i« mor apparent. We

can define a;.d redefme oata types ana operations without disturbing the rest of the

description. The example also shows a possible way of implementing the adder. If the

descnpt.cn is taking literatty, it implies that e^ery register ,s m fad a functional unit,

cöpao.e of performing any arithmetic uperat.on. For a fir«! ipprowmetion tms rnay oe

«n accepiao.e definition, A better definition would dedere a single functional unit and

all register operations cou.d then oe defined using th.s unit, it is clear aiso tnat we can

declare other types of registers, for instance, counters that would look like any other

register but with the property that some simpe oper.it.ons (e.g., add 1, subtract 1, set

to 0, etc) would be pertormed directly m tne register.

X.

Sornö Aspects of tne Symooli: ivlanipulat.on 20

of Computer Descriptions

Sigtwls and Control Exprcasiom.- [Mi us assume that we are satisfied with our

previous descnptun (it is oy no means complete, but for the sa^ cf brevity let us

accept it). Tho sequencing of operations as expressed m the description does not

indicate how the control passes through the machine description, i.e., the semantics of

"nüxt" and ";" i« specified oniy to the pont of snowing that certain actions are

performed concurrently or tnat some actions must be completed before others can

start.

We can formalize the sequencing of the operation by using control expressions,

based on an unaeriymg finte state machine, of the following tyre:

pre-condit.on ; bc'ion | post-condition

The pre-condition represents the condition tnat must be met before the action

can oe executed. The action is initiated as soon as tne pre-condition is satisfied. The

post-condition indicates the condit.ons that exist upon completion of the action. The

pre-condition is expressed as a conjunction of signals and boolean expressions. The

evaluation of the pre-condition must be an .ndivisible, timeless sction. The

post-condition is expressed in ierms of the signal operator, .0. The >c) operator

generates a signal tnat can be used oy the pre-conditions, The signals are assumed to

be unit pulses, therefore they exist only for a ünef time, enougn to evaiu ; the

pre-conditions. The latching operator £ can be used to store a signal for later use in

a pre-condition. Latched signals will obviously exist for longer periods of time but

they will dissapear as soon as they are usec ..e., as soon as the pre-condition that

contains tne latched signal ii met. There is a memory device associated with each

- . C »^ ^- -^—^^^^^^^^M^—^^^_^^—^

Ci

Some Aspects of (he Symbolic Manipulation

of Computer Descriptions

mstance of the < operator

Examples:

si:. ... I "W^J

si AS2: . . • •

^(sl)A^(s2):

.T. - action) I <action-iist> ; <action>
<action-l(st> ::- <aaion> ^ ^-ac.on)
<action> ::= <r-transfer> 1 <löbel> I \

Control KxprcssionsTraushiionliulcs.-

pre-condition

ISP to

descnpiion

1) label := (s-action)

2) Si : «* ; /-M ^^

3) Si I «tnext/J 1 MS\)

4) Si : od=»/i I MS\)

label

Si
SI
tflSl'lA^Sl")

Si
Si'

SiAoi

action post-condit^n

:s-action I MlabeUdJne)

'.U

iß

l ÄiSi')

| A(Sj)

| dt«*)
I ,0(Sj)

I ^(Sj)

X.

Some Aspects of the Symbolic Manipulation
of Computer Descriptions

22

Si A -oi

5) Si : decode o<i=»/20, ^n | /)(Sj)
SiAo<:=0

I ^CSiJ

6)$i t (•() | >ö(Sj)

7) Si : label | i6(Sj]

Si Ao<; = n

Si

Si
Si Alabe!_done

/JO 1 .ö(Sj)

/Jn I MSi)

o< I ^(Sj)

| ^(label)

As an example, we wil apply the above rules to part of the POPS description,

specifically, the ISZ instruction.

1) Applying rule 0 to the EXECUTE process:

EXECUTE :

2) Applying rule 5 to separate the individual instructions!

^(EXECUTE_DONE)

EXECUTE AOP_CODE = ,ISZ, ,O(EXECUTE_D0NE)

3) Applying rule 3 several times to the s-action describing the instruction;

EXECUTEA')P_C0DE = ,1SZ' : mar«-CPMA I MSI)
SI : mbr «-M[mar] I MS2)
S2 : n br Wnbr+ » I MS3)
S3 : K [mar] «-mbr | ,0154)

S4 : (mbr<0=^PC«-PC + i) 1 A{EXECUTE_DONE)

4) Applying rule 4 to the last component:

EXECUTE AOP_CODE = ,ISZ'
SI
S2
S3
S4Arnbr<0
S4A-(MBR<0)

: mar*-CPMA
: mbr *-M[mar)
: mbr «-mbr +1
: M[mar] «-mor
:PC«-PC + 1

I MSI)
I ifr($2)
I MS3)
I i6(S4)
| >Ö(EXECUTE_DONE)
I A(EXECUTE_DONE)

«■

Some Aspects of the Symbolic N/lampuiatiOn 2J
Of Computer Descriptions

The complexity of the actions in the control expressions can be arbitrary. This

allows us to expand the description in selected parts Of the machine. If we want to be

more precise about the timing of the operations we can add, to the form defining the

machine component, the .nformation necessary to indicate how the signals are produced.

For instance, we can odd to the write operation in some register form the statement

■ViSnal after 200" to indicate that the write operation takes 200 nanoseconds. A

synchronous machine could be specified by the statement "signai BB P3" where P3 is

the nan e of a ciocK pnase.

Since we can in fact represent all the operations m terms of register transfer^

with the appropriate delays, we have a convenient mechanism to indcate the timip-, in a

machine. All we have to do is provide the appropriate signal on or Signa! IÜIC

statements in the write function of the forms describing each component.

At this point a reshuffling of the aescnption may be desired to simplify the

control logic. It is advantageous to group the primitive operations by the

pre-conditions under which they are triggered rather than by the position in an

opcode sequence. This is straightforward and easy to verify the correctness of the

transformation. A related prr-blem is the reduction of the number of control

expression-, by renaming signals that are produced under similar circumstances an^i with

similar effects. The importance of this "optimization" is evident snce the number of

different signals is related to the number 01 possible states of the machine, part of

which must be encoded in the instruction code.

MM

Soms Aspects of the Symbole Manipulation 24
of Computer Descriptions

COiMCLUSiONS

We attempt to ease the task of programming by relativiüing the production of

software to the machines in which it will execute. The vehicle is a symbolic description

of the hardware machine. This new area of application for computer descriptive

languages reauires some properties that are not found in existing notations. The use

of structured programming concepts in the descnntion of a computer system will allow

the solution of a range of problems, as Outlined in tins paper, by manipulation of these

symbolic descriptions.

RtFtPENCES

[Anceau, 1969] Anceau, F., P. Lidell, J. Mermet, ind C. Payand:
"CASSANDRE: A Language to Describe Digital Systems, Applications
to Logic Design". Third International Symposium on Computer and
Information Science (COINS-69), Miami, December i969.

[Barbacci, 1973a] Barbacci, M.R.: "A Comparison of Register Transfer Languages
for Describing Computers and Digital Systems". Department of
Computer Science, Carnegie Mellon University. PB-221591.

[Barbocci, 1973b] Barbacci, M.R. and D.P. Siewiorek: "The Automated
Exploration of the Dccign Space for Register Transfer (RT)
Systems". First Annual Symposium on Computer Architecture,
University of Florida, Gainesville, December 19/3,

[Bell, 1971] Bell, CG. and A. Newell: "Computer Structures: Readings
and Examples". McGraw Hnl Book Company, New York, 1971.

[Bell, 1972] Bell, CG., J. Grason, and A. Newell: "Designing Computers
and Digital Systems". Digital Press, Digital Equipment Corporation,
1972.

[Chu, 1965] Chu, Y.: "An Algol-like Computer Design Language". CACM,

mm*

Some Aspects of the Symbolic Manipulation
of Computer Descriptions

25

Vol. 8, October 1965, pp. 607-015.

Dig.tal Equ.pment Corporation: "PDP-11 Processor

HandbooK", Maynard Mass. 1973.

Feldman J.: "A Formal Semantics for Computer Languages and
it, Apphcation in a Compiler Comp.ier". CACM Vol. 9, January

1965, pp. 3-9.

Miller P.L.: "Automatic Creation of a Code Generator From a
Machine Descnphon". Massachusetts Instate of Technology.

Project MAC report TR-85, May I97i.

TNe^comer 1974] Newcomer. J.1 "Machine Independant Generation of Optima!
[Newcomer, iy/^J ^ ^^ ^ ^^ Department of Computer Science,

Carnegie-Mellon University, (m preparation).

[Wuif 19741 Wulf, W.A.: "ALPHARD: Toward a Language to Support
[' J Structured Programs". Computer Science Department,

Carnegie-Mellon University, 1974.

[DEC, 1973]

[Feldman, 1966]

[Miller, 1971]

mm

